editing disabled

Having an ~5:3 as a generator, this temperament is the application of the Pythagorean principle of tuning a stack of the next higher prime number and then factoring out powers of the equivalence to tritave composition. However, a heptatonic MOS (2L 5s) will not suffice to produce an understandable rendition of it because a very close ~5:3 generates a L:s ratio between 4:1 and 5:1, which is beginning to get too lopsided to still be a complete presentation of a temperament. Below is.a list of MOS families which present it completely (however smearily) using a generator of 845.3 to 951.0 cents:

Mini chromatic
Anti-chromatic

Generator
cents
L
s
2g
Notes
6\13






877.825
146.304
0.00
1755.651
L=1 s=0






43\93
879.399
143.158
20.451
1758.797
L=7 s=1





37\80

879.654
142.647
23.774
1759.38
L=6 s=1






68\147
879.816
142.323
25.877
1759.632





31\67


880.009
141.937
28.387
1760.081
L=5 s=1






87\188
880.16
141.634
30.35
1760.32






56\121

880.243
141.468
31.437
1760.487







81\175
880.3335
141.288
32.605
1760.667




25\54



880.535
140.886
35.221
1761.069
L=4 s=1






94\203
880.708
140.5385
37.477
1761.4165






69\149

880.711
140.413
38.294
1761.542







113\244
880.823
140.308
38.9745
1761.647





44\95


880.9055
140.144
40.041
1761.811
L=7 s=2






107\231
880.992
139.971
41.168
1761.984






63\136

881.053
139.85
41.955
1762.105







82\177
881.132
139.692
42.982
1762.263



19\41




881.394
139.167
46.389
1762.788
L=3 s=1






89\192
881.635
138.684
49.53
1763.271






70\151

881.701
138.553
50.383
1763.402







121\261
881.794
138.4565
51.01
1763.4985





51\110


881.8155
138.324
51.8715
1763.631







134\289
881.875
138.204
52.649
1763.751






83\179

881.912
138.131
53.172
1763.824







115\248
881.955
138.045
53.684
1763.91




32\69



882.066
137.823
55.129
1764.132
L=5 s=2






109\235
882.183
137.588
56.654
1764.367






77\166

882.232
137.491
57.288
1764.464







122\263
882.276
137.404
57.854
1764.551





45\97


882.35
137.2545
58.823
1764.7005
L=7 s=3






103\222
882.439
137.078
59.972
1764.877






58\125

882.507
136.941
60.863
1765.014







71\153
882.607
136.742
62.155
1765.213


13\28





883.0505
135.854
67.93
1766.101
L=2 s=1






72\155
883.489
134.9775
73.624
1766.9775






59\127

883.585
134.784
74.88
1767.171







105\226
883.652
134.652
75.742
1767.303





46\99


883.737
134.482
76.847
1767.473
L=7 s=4






125\269
883.808
134.339
77.775
1767.616






79\170

883.85
134.256
78.316
1767.699







112\241
883.896
134.163
78.919
1767.792




33\71



884.007
133.94
80.364
1768.0145
L=5 s=3






119\256
884.112
133.731
81.725
1768.224






86\185

884.152
133.651
82.247
1768.304







139\299
884.186
133.582
82.694
1768.373
Golden Arcturus is near here




53\114


884.24
133.4705
83.419
1768.4845







126\271
884.303
133.347
84.219
1768.608






73\157

884.3485
133.258
84.8005
1768.697







93\200
884.409
133.137
85.588
1768.818



20\43




884.63
132.6945
88.463
1769.2605
L=3 s=2






87\187
884.867
132.2215
91.538
1769.7335






67\144

884.937
132.08
92.456
1769.875







114\245
884.991
131.972
93.157
1769.983





47\101


885.068
131.819
94.156
1770.136
L=7 s=5






121\260
885.141
131.674
95.098
1770.281






74\159

885.187
131.582
95.696
1770.373







101\217
885.242
131.4715
96.4125
1770.4835




27\58



885.393
131.169
98.377
1770.786
L=4 s=3






88\189
885.566
130.822
100.6325
1771.133






61\131

885.643
130.669
101.631
1771.286







95\204
885.714
130.526
102.556
1771.429





34\73


885.842
130.271
104.217
1771.684
L=5 s=4






75\161
886.004
129.947
106.3205
1772.008






41\88

886.138
129.679
108.065
1772.276
L=6 s=5






48\103
886.348
129.259
110.7935
1772.696
L=7 s=6
7\15






887.579
126.797
1775.158
L=1 s=1

Mini enharmonic
Enharmonic
Anti-enharmonic